
	
	
	
	
	
	
	
	
	
	
	
FiMaLib	–	Financial	Mathematics	Library	

	
An	open	source	financial	mathematics	library	and	market	data	database	



0)	Versioning	
	
This	document	is	intended	as	a	working	guide	for	the	FiMaLib	project.	It	is	a	high	level	
description	of	the	various	parts	of	the	project.	Detailed	development	notes	may	be	
supplied	in	separate	documents	
	

0.1)	Version	history	
	
Date	 Version	 Author(s)	 Description	
03-Mar-2017	 0.1	 Peter	Werno	 Initial	version	with	rudimentary	layout	

and	description	of	the	various	parts	
	
	

0.2)	Table	of	contents	
	

Inhaltsverzeichnis	

0)	Versioning	 2	
0.1)	Version	history	 2	
0.2)	Table	of	contents	 2	

1)	General	layout	 2	
1.1)	Structural	diagram	of	the	FiMaLib	system	 3	
1.2)	Programming	principles	 3	
1.2.1)	Java	coding	conventions	 3	
1.2.2)	SQL	naming	conventions	 3	

2)	Instrument	Statics	 5	
2.1)	The	instrument	statics	database	 5	
2.1.1)	Keeping	track	of	changes	in	the	static	data	 5	
2.1.2)	Major	tables	in	the	instrument	statics	database	 5	
2.1.3)	Daycount	convention	tables	in	the	FiMaLib	DB	 8	
2.1.4)	User	management	tables	in	the	FiMaLib	DB	 9	

2.2)	The	instrument	statics	webservice	 9	

3)	Instrument	market	data	 9	
3.1)	The	instrument	market	data	database	 9	
3.2)	The	instrument	market	data	webservice	 9	

	
	
	

1)	General	layout	
The	FiMaLib	system	consists	of	a	number	of	parts,	most	of	which	can	be	used	
independently	to	solve	special	problems.		
	



1.1)	Structural	diagram	of	the	FiMaLib	system	
	

Figure	1:	Schematic	overview	of	FiMaLib	components	
	

1.2)	Programming	principles	
The	majority	of	the	FiMaLib	system	will	be	coded	in	Java,	using	SQL	(and	potentially	
other)	database	systems	for	the	data	storage.	
	
1.2.1)	Java	coding	conventions	
tbd	
	
1.2.2)	SQL	naming	conventions	
Tables	in	the	sql	databases	of	FiMaLib	will	be	prepended	with	the	code	“tbl”	in	lower	
case,	followed	by	a	descriptive	information	of	what	data	is	stored	in	this	table	using	the	
same	naming	convention	used	for	Java	classes	and	using	the	plural	form	(e.g.	
“tblInstruments”	or	“tblInstrumentTypes”).		
	
Fields	in	FiMaLib	SQL	tables	are	preceded	with	the	code	“fld”	in	lower	case,	followed	by	
a	descriptive	information	of	what	data	is	stored	in	this	field	using	the	same	naming	
convention	used	for	Java	classes	and	using	the	singular	form	(e.g.	“fldID”,	“fldName”,	
“fldInstrumentType”).	



Exception:	If	the	field	contains	foreign	keys	(i.e.	IDs	in	a	different	table),	then	the	field	
name	is	preceded	by	“fk”	instead	of	“fld”.	If	a	field	is	(or	is	part	of)	a	primary	key,	the	
name	is	preceded	by	“pk”	instead	of	“fld”.	
	

1.3	Access	rights	
While	the	FiMaLib	project	intends	to	provide	an	open	source	database	where	all	data	
should	be	public	data,	the	project	may	be	used	by	institutions	where	selective	access	to	
data	is	necessary.	Therefore,	FiMaLib	includes	a	user	account	management	as	well	as	an	
access	right	strategy.	
	
Within	the	open	source	database,	user	accounts	are	required	for	manipulating	data,	
while	all	data	stored	in	the	public	database	is	readable	by	any	user,	including	a	“guest”	
user.	
	
1.3.1	User	accounts	
A	very	simplistic	user	table	is	defined	in	the	statics	database	which	takes	on	basic	
information	on	the	user.	A	user	in	this	table	may	be	linked	to	a	separate	access	rights	
system	such	as	a	NIS,	NetInfo,	LDAP	or	other	system.	In	this	case,	only	the	FiMaLib-
internal	user	ID	and	the	external	ID	reference	will	be	used.	Otherwise,	FiMaLib	also	
comes	with	its	own	user	access	system.	In	that	case,	the	whole	tblUsers	table	will	be	
used.	
	
1.3.1.1	The	user	table	tblUsers	
The	user	table	“tblUsers”	comes	with	the	following	fields,	allowing	for	a	fully-fledged	
user	management	for	the	FiMaLib	database	system.	
	
Field	name	 Field	type	 Description	
fldUserID	 Integer/numeric	 An	auto-number	integer	which	is	used	

as	a	foreign	key	in	all	other	tables	that	
store	a	user	info	(e.g.	the	historization	
tables	in	chapter	2.1.1)	

fldExternalID	 Variant/Text	 A	reference	to	an	external	user	
account	management	system	
(depending	on	the	configuration)	

fldUserName	 Varchar(1024)	 The	user/login	name	
fldPassword	 Varchar(1024)	 The	user’s	password	encrypted	
fldFirstName	 Varchar(128)	 The	user’s	first	name(s)	
fldLastName	 Varchar(128)	 The	user’s	last	name	
fldAddress	 Varchar(1024)	 The	user’s	address	(street,	zip,	city,	

Country,	etc.)	
fldEMail	 Varchar(1024)	 The	user’s	email	address	
fldCreationDate	 Datetime	 When	the	user	entry	was	created	
fldConfirmed	 Boolean	 Whether	the	user	email	was	

confirmed	
fldDeleted	 Boolean	 Logically	deletion	flag	
fldDeletionDate	 Datetime	 When	the	user	was	deleted	
	
	



1.3.2	Access	rights	
	
	
	
	
	
	

2)	Instrument	Statics	
The	instrument	statics	part	contains	information	about	financial	instruments	that	have	a	
descriptive	character	–	i.e.	they	describe	the	financial	instrument.	This	data	is	usually	
considered	“static”,	which	means	this	data	usually	does	not	change	during	the	lifetime	of	
the	instrument	(in	contrast	to	dynamic	or	market	data	which	is	dependent	on	the	point	
in	time	that	they	are	observed).	Unfortunately,	static	data	occasionally	changes	(e.g.	a	
bond	coupon	may	change,	a	currency	may	see	a	devaluation	and	subsequently	a	split,	a	
company	may	get	purchased,	renamed,	closed,	etc.).	Therefore,	also	static	data	needs	to	
be	historised	properly	to	reflect	these	changes.	
	

2.1)	The	instrument	statics	database	
The	instrument	statics	database	is	the	database	containing	the	data	describing	the	
details	of	a	financial	instrument.	As	instrument	data	is	often	inter-linked,	a	relational	
database	appears	the	best	fit.	However,	instrument	static	data	also	brings	certain	
features	usually	implemented	in	the	form	of	objects	(e.g.	with	inheritance).	To	cater	for	
this	feature,	the	“initial”	tables	are	highly	normalized.	
	
2.1.1)	Keeping	track	of	changes	in	the	static	data	
Most	tables	in	the	statics	database	have	a	corresponding	shadow-table	(preceded	with	
an	additional	“hist”	preceding	the	table	name,	e.g.	“histtblInstruments”).	These	tables	
have	three	additional	fields,	which	show	what	kind	of	change	was	last	performed.	These	
three	fields	will	be	part	of	the	primary	key	of	the	“hist”	table	–	on	top	of	the	fields	
making	up	the	primary	key	of	the	underlying	table.	
	
Field	name	 Field	type	 Description	
fkHistChangedBy	 Integer/numeric	 A	link	to	the	table	tblUsers,	indicating	

which	person	changed	this	data	
pkHistChangeDate	 Datetime	 The	date/time	when	the	change	was	done	
pkHistChangeType	 Integer/numeric	 The	type	of	change:		

1	=	insertion	
2	=	update	
3	=	deletion	

	
2.1.2)	Major	tables	in	the	instrument	statics	database	
This	part	describes	the	tables	used	for	storing	instrument	static	data	in	the	FiMaLib	DB:	
	
2.1.2.1)	Tables	related	to	the	instrument	type	(tblInstrumentTypes,	tblInstrumentTypeFields,	
tblVersions)	
These	tables	contain	information	about	instrument	types.	This	information	must	be	
synchronized	with	the	instrument	types	in	the	public	FiMaLib	database	and	therefore	is	



provided	as	defaults	with	the	FiMaLib	code	(i.e.	it	must	be	ensured	that	a	Java	object	that	
stores	a	“CDS	rate”	instrument	has	the	same	instrument	type	id	and	fields	for	“CDS	rate”	
in	the	public	FiMaLib	DB	as	well	as	in	any	user-operated	version	of	the	FiMaLib	DB).	
Furthermore,	the	information	in	this	table	should	not	be	changed	except	for	when	a	new	
version	of	FiMaLib	is	installed.	In	this	case,	these	tables	will	be	(re)created	and	filled	
with	all	necessary	information.	Obviously,	these	tables	do	NOT	have	shadow-tables	as	
described	in	2.1.1)	
	
Attention:	FiMaLib	(Java)	code	should	be	downward-compatible!	As	such,	the	Java	code	
for	a	higher	version	of	FiMaLib	should	be	able	to	cope	with	a	user-installed	FiMaLib	
database	with	a	lower	version!	
	
2.1.2.1.1)	tblVersions	
This	table	contains	only	one	entry	–	the	version	of	the	FiMaLib	static	DB	installed.	It	
must	not	be	changed	except	when	installing	a	different	FiMaLib	static	DB	version!	The	
version	number	uses	a	triplet	of	major	and	minor	version	number	and	a	release	number,	
such	as	“1.2.7”,	split	into	three	fields	as	follows:	
	
Field	Name	 Field	type	 Description	
fldMajorVersion	 Integer/numeric	 The	major	version	ID	
fldMinorVersion	 Integer/numeric	 The	minor	version	ID	
fldRelease	 Integer/numeric	 The	release	
	
	
2.1.2.1.2)	tblInstrumentTypes	
	
Primary	key:	fldInstrumentTypeID	
	
Field	name	 Field	type	 Description	
fldInstrumentTypeID	 Integer/numeric	 The	FiMaLib	ID	of	the	instrument	type	
fkParentInstrumentTypeID	 Integer/numeric	 The	parent	type	(e.g.	a	floating	rate	

note	is	a	child	instrument	type	of	
“Bond”)	

fldInstrumentTypeName	 Varchar	(256)	 A	short	description	of	the	instrument	
type.	Attention:	This	may	be	prone	to	
localization	problems	

fldFiMaLibClass	 Varchar(1024)	 The	class	name	of	the	FiMaLib	statics	
library	that	implements	the	class.	

	
This	table	is	prefilled	with	instrument	types	based	on	the	version	of	the	FiMaLib	library	
(here,	the	last	field	also	relates	to	the	implementation	of	the	FiMaLib	class,	which	must	
be	an	implementation	of	the	interface	defined	in	org.fimalib.instruments).	A	definition	of	
all	implemented	instrument	types	can	be	found	in	the	definitions	of	the	interface	
org.fimalib.instruments.Instrument.	As	per	Version	1.0.1,	the	content	of	this	table	is:	
	
ID	 Parent	 Name	 Class*	 Since	Vers.	
1	 Null	 Generic	Instrument	 InstrumentImpl	 1.0.1	
2	 Null	 Legal	Entity	 LegalEntityImpl	 1.0.1	
3	 Null	 Stock	 StockImpl	 1.0.1	



ID	 Parent	 Name	 Class*	 Since	Vers.	
4	 Null	 Commodity	 CommodityImpl	 1.0.1	
5	 Null	 Loan	 LoanImpl	 1.0.1	
6	 Null	 Bond	 BondImpl	 1.0.1	
7	 Null	 Rate	 RateImpl	 1.0.1	
8	 Null	 Curve	 CurveImpl	 1.0.1	
9	 Null	 FX	 CurrencyImpl	 1.0.1	
10	 Null	 Derivative	 DerivativeImpl	 1.0.1	
11	 Null	 Portfolio	 PortfolioImpl	 1.0.1	
12	 Null	 Country	 CountryImpl	 1.0.1	
3001	 3	 Common	Stock	 CommonStockImpl	 1.0.1	
3002	 3	 Preferred	Stock	 PreferredStockImpl	 1.0.1	
4001	 4	 Energy	Commodity	 EnergyCommodityImpl	 1.0.1	
4002	 4	 Metal	Commodity	 MetalCommodityImpl	 1.0.1	
4003	 4	 Agricultural	Commodity	 AgriculturalCommodityImpl	 1.0.1	
4004	 4	 Lifestock	Commodity	 LifestockCommodityImpl	 1.0.1	
5001	 5	 Final	Payment	Loan	 FinalPaymentLoanImpl	 1.0.1	
5002	 5	 Defined	Payments	Loan	 DefinedPaymentsLoanImpl	 1.0.1	
5003	 5	 Amortizing	Loan	 AmortizingLoanImpl	 1.0.1	
6001	 6	 Bullet	Bond	 BulletBondImpl	 1.0.1	
6002	 6	 Floating	Rate	Note	 FRNImpl	 1.0.1	
6003	 6	 Convertible	Bond	 ConvertibleBondImpl	 1.0.1	
7001	 7	 Par	Rate	 ParRateImpl	 1.0.1	
7002	 7	 Zero	Rate	 ZeroRateImpl	 1.0.1	
7003	 7	 Swap	Rate	 SwapRateImpl	 1.0.1	
7004	 7	 Forward	Rate	 ForwardRateImpl	 1.0.1	
7005	 7	 Exchange	Rate	 ExchangeRateImpl	 1.0.1	
8001	 8	 Yield	Curve	 YieldCurveImpl	 1.0.1	
8002	 8	 Par	Curve	 ParCurveImpl	 1.0.1	
8003	 8	 Zero	Curve	 ZeroCurveImpl	 1.0.1	
8004	 8	 Swap	Curve	 SwapCurveImpl	 1.0.1	
10001	 10	 Forward	 ForwardImpl	 1.0.1	
10002	 10	 Future	 FutureImpl	 1.0.1	
10003	 10	 Option	 OptionImpl	 1.0.1	
10004	 10	 Swaption	 SwaptionImpl	 1.0.1	
*	Class	name	in	the	package	org.fimalib.statics.instruments	
	
	
	
2.1.2.1.3)	tblFields	
	
primary	key:	fldFieldID	
	
Field	name	 Field	type	 Description	
fldFieldID	 Integer/numeric	 	
fldFieldName	 Varchar	(256)	 Description	of	what	data	

this	field	contains	(e.g.	
“Coupon”)	

fldFieldType	 Enumeration	 1	=	Integer	



2	=	Floating	point	number	
3	=	String	(size?)	
4	=	Datetime	
5	=	Boolean	

	
	
	
2.1.2.1.4)	tblInstrumentTypeFields	
	
primary	key:	fkInstrumentTypeID,	fkFieldID	
	
Field	name	 Field	type	 Description	
fkInstrumentTypeID	 Integer/numeric	 A	link	to	the	instrument	type	table	

(tblInstrumentTypes	–	see	2.1.2.1.2)	
fkFieldID	 Integer/numeric	 A	link	to	the	fields	table	(tblFields	–	see	

2.1.2.1.3)	
	
	
	
2.1.2.2)	The	instruments	table	(tblInstruments)	
The	most	important	part	of	tblInstruments	is	the	field	fldID,	containing	the	FiMaLib	ID.	
This	ID	is	used	to	identify	the	instrument	in	any	other	table	containing	instrument	data.	
The	ID	uses	auto-increment	to	ensure	a	unique	key	for	this	table.	This	can	however	
cause	problems	if	a	user	wants	to	run	his/her	own	database	(e.g.	a	bank	that	wants	to	
store	its	own	in-house	prices	in	the	FiMaLib	DB	without	showing	them	to	the	rest	of	the	
world	as	would	be	the	case	when	using	the	public	FiMaLib	DB)	as	internal	IDs	may	
(most	certainly	“will”)	be	different	from	the	FiMaLib	IDs	used	in	the	public	database.	To	
solve	this	problem,	a	matching	can	be	done	using	an	external	ID.	
	
Field	name	 Field	type	 Description	
fldID	 Long	

Integer/numeric	
The	FiMaLib	ID	of	the	instrument	

fkInstrumentTypeID	 Integer/numeric	 A	link	to	the	table	tblInstrumentType	
fldDescription	 Varchar	 A	description	of	the	instrument	
fkCreatedBy	 Integer/numeric	 A	link	to	the	table	tblUsers,	indicating	the	

person	that	initiated	the	creation	of	the	
instrument	

fldCreationDate	 Datetime	 The	date/time	when	the	instrument	was	
created	in	the	FiMaLib	DB	

fkLastChangedBy	 Integer/numeric	 A	link	the	the	table	tblUsers,	indication	the	
person	that	last	changed	a	static	detail	of	the	
instrument	

fldLastChangedDate	 Datetime	 The	date/time	when	the	instrument	static	
data	was	last	changed.	

	
2.1.3)	Daycount	convention	tables	in	the	FiMaLib	DB	
	
	



2.1.4)	User	management	tables	in	the	FiMaLib	DB	
FiMaLib	should	be	able	to	use	different	types	of	user	access/rights	management.	In	
some	cases,	the	actual	management	will	happen	in	external	systems	(e.g.	using	personal	
digital	certificates,	using	a	Windows	domain	account,	etc.).	Nonetheless,	many	tables	
require	a	user	ID	(see	2.1.1	for	example).	The	system	must	therefore	ensure	that	the	
user	tables	are	filled	with	data	from	external	systems	when	a	uses	accesses	the	service.	
	
2.1.4.1)	the	user	table	(tblUsers)	
This	table	stores	the	users’	data	
	
	
	
	
	
	

2.2)	The	instrument	statics	webservice	
	

3)	Instrument	market	data	
	

3.1)	The	instrument	market	data	database	
	

3.2)	The	instrument	market	data	webservice	
	
	


